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Abstract—In combination with current sociological trends, the maturing development of I0T devices is projected to revolutionize
healthcare. A network of body-worn sensors, each with a unigue ID, can collect health data that is orders-of-magnitude richer than
what is available today from sporadic observations in clinical/hospital environments. When databased, analyzed, and compared against
information from other individuals using data analytics, HIoT data enables the personalization and modernization of care with radical
improvements in outcomes and reductions in cost. In this paper, we survey existing and emerging technologies that can enable this vision
for the future of healthcare, particularly in the clinical practice of healthcare. Three main technology areas underlie the development of
this field: (a) sensing, where there is an increased drive for miniaturization and power efficiency; (b) communications, where the enabling
factors are ubiquitous connectivity, standardized protocols, and the wide availability of cloud infrastructure, and (c) data analytics and
inference, where the availability of large amounts of data and computational resources is revolutionizing algorithms for individualizing
inference and actions in health management. Throughout the paper, we use a case study to concretely illustrate the impact of these
trends. We conclude our paper with a discussion of the emerging directions, open issues, and challenges.

Index Terms—health management, clinical 0T, health monitoring, healthcare analytics, digital health, medical decision support.

1 INTRODUCTION

A strong synergy exists between the technological advances
in Internet of Things (IoT) and the emerging needs and
directions of healthcare applications. With a rapid expansion
in the deployment of 10T devices and increasing desire
to make healthcare more cost-effective, personalized, and
proactive, 10T is poised to play a strong role in all aspects
of health management, and for our discussion, we refer to
this important segment of 10T as the Healthcare Internet of
Things (HIoT). HIoT can be broadly classified into two sub-
categories: personal and clinical. Personal HIoT includes de-
vices such as activity/heart rate trackers, smart clothes and
smartwatches (e.g., Fitbit [1], Apple watch [2]) that are used
by consumers for self-monitoring. These general purpose
devices are not strictly regulated and are intended for use by
consumers without involvement/guidance from physicians.
Clinical HIoT devices are built specifically for health mon-
itoring under the guidance —and with the involvement—
of a physician. Examples include smart continuous glucose
monitors [3] and connected inhalers [4]. These devices are
intended for use in either clinical or home environments and
are strictly regulated and approved for use only after clinical
validation. This paper surveys the emerging field of clinical
HloT.
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A confluence of social and technological trends is moti-
vating the adoption of 10T in the clinical setting. On the so-
cial side, aging populations in the West are straining clinical
institutions and healthcare costs are rising at significantly
higher rates than baseline inflation [5]. On the technology
side, most healthcare institutions are already connected to
the internet and are, therefore, well poised to take advantage
of the increasing availability of high bandwidth connectiv-
ity, inexpensive cloud storage and computation, and large-
scale data analytics. HIoT technologies are attractive in this
emerging scenario because they allow personalization of
clinical healthcare enabling not only significant cost reduc-
tions but also improved outcomes through higher respon-
siveness, customization, and effective exploitation of aggre-
gated data. HIoT can reduce the time taken to diagnose a
health condition [6], provide efficient high-quality care, and
help to reduce hospitalization costs [7] as well as the chance
of readmission for the same health issue [8], [9]. Being
connected with HIoT enables patients to provide continuous
feedback to the doctors and monitor their own progress,
which enhances patient engagement and satisfaction. Rich
collections of longitudinal data from heterogeneous sources,
made possible by HIoT adoption, also opens up new av-
enues for augmenting traditional diagnostic approaches
employed by physicians. Specifically, data analytics can
automatically flag physiological anomalies for further in-
vestigation and visualization technologies can summarize
salient trends, without cognitively overloading physicians
and interfering with their patient interactions in the clinic.

Several recent surveys address specific aspects of
HIoT systems. Medical 10T devices focusing on personal-
ized healthcare systems [10], and applications with tod-
dlers/kids [11] have been reviewed. Applications of remote
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health monitoring systems such as body temperature mon-
itoring and elderly care [12], and applications focusing on
healthcare solutions using smartphones, ambient assisted
living (AAL), and wearable devices have been studied in
detail [13]. HIoT applications in rural healthcare focusing
on improving healthcare in developing countries have also
been reviewed [14]. Other survey papers include studies
focusing on communication [15], security, and data privacy
aspects of HIoT systems [16], [17]. HIOT in smart homes [18],
high-risk environments, and safety industries [19], and HIoT
based services for mental health [20] have also been the fo-
cus of several reviews. Distinct from these prior surveys, the
present paper focuses particularly on —and provides end-
to-end coverage for— the clinical side of HIoT. Additionally,
the ideas discussed are concretely illustrated throughout
the paper by using an example from the clinical setting,
specifically from neurology.

The rest of the paper is organized as follows. Section 2
presents a discussion of trends, challenges, and application
requirements that loT adoption in the clinical settings faces.
To motivate the subsequent discussions, example loT-based
health management applications are presented in Section 3.
This section also introduces a case study from the neurology
field, which is used as a running example throughout the
paper to concretely highlight the concepts presented in the
paper. In Section 4, the overall architecture of a health
management system is presented and its components, data
sensing, acquisition and communication, aggregation, and
pre-processing are further discussed in Section 5 and Sec-
tion 6, respectively. Analytics and inference in healthcare
applications are surveyed in Section 7, followed by a discus-
sion of medical data visualization techniques in Section 8.
Section 9 investigates security and privacy considerations
of HIoT. Finally, Section 10 concludes the paper with our
vision for the future.

2 TRENDS, APPLICATION DEMANDS, AND CHAL-
LENGES

The majority of prior surveys on smart healthcare limit
their discussion to specific aspects of the field such as
sensing [21], [22], communication [23]-[25], data process-
ing [26], and security [27]. Taking full advantage of the
smart healthcare concept is contingent upon understanding
the synergy of multiple mega-trends happening concurrently
in the smart healthcare ecosystem [28] and how these trends
affect the clinical practice of medicine and healthcare. In this
section, we first highlight some of the major technological
and societal trends that are driving HIoT adoption and then
summarize the demands and challenges of HIoT applica-
tions.

2.1 Technological and Societal Trends

Data Acquisition: Unobtrusive, inexpensive, and accurate
sensors are the work-horses for smart healthcare systems.
Such sensors can replace the current practice of in-clinic
sporadic sensing with continuous monitoring. Although the
problem of building ideal smart healthcare sensors is far
from being solved, several recent advances in sensing tech-
nologies have alleviated many of the existing challenges.
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Continuously diminishing feature sizes, integrated circuits
have reduced the physical dimensions and power consump-
tion of on-chip sensing devices while offering impressive
computational capability.

Ambient energy harvesting proposals enable practical
in-vivo sensors that no longer require a battery [29], [30].
Radio Frequency-based (RF-based) ambient sensors are
working toward the measurement of multiple biomarkers
such as respiration [31], [32], heartbeat [33], and motion
detection [34], [35], although practical designs are still an
active research area.

The first generation of personal health monitoring de-
vices, such as smartwatches [2], has addressed several sys-
tem integration issues and a software-user ecosystem has
emerged that can be re-purposed to effectively integrate
HIoT into clinical healthcare to enable better-informed de-
cisions and care. In an important development, illustrated
in Fig. 1, such data is also being complemented by data
collected from alternative sensors —that are not necessarily
designed for healthcare applications, e.g., ambient sensors—
can be fused with information from personal health moni-
toring devices to provide context awareness.

Data Communication: Low-delay, high-throughput, and
low-power communication is an integral requirement of
many smart healthcare applications. Two factors are crucial
to the evolution of HIOT: (i) hierarchical network structuring
(e.g., using cloudlets [36]) (ii) and the maturity of Wireless
Body Area Networks (WBANSs) [37]. A complete review of
healthcare communication technologies can be found in [15].

Data Processing: By generating an unprecedented vol-
ume of information, burgeoning loT services have signifi-
cantly contributed to the big data phenomenon. Advances
in parallel computation architectures, such as Graphics Pro-
cessing Units (GPUs), promise to substantially reduce the
amount of time necessary to perform sophisticated com-
putations on acquired data. Furthermore, advances in data
analytics and inference promise to extract information that
can open the door to new cures for diseases and drastically
improve diagnostic quality by providing superior decision
support to healthcare professionals. ML algorithms have
specifically made it feasible to predict the onset of fatal
incidents such as seizures and heart attacks [38]. The impact
of these advances has reached far beyond data processing;
for example, signal processing and ML algorithms can now
be used as an effective defense against noise [39], [40],
offsetting the imperfections in data acquisition and commu-
nication.

Security and Privacy: Security and privacy considera-
tions in smart healthcare systems have long been overshad-
owed by the design objectives of other system components;
application-oriented services often trade off security and
privacy considerations for shortened design time. However,
the focus is returning to security and privacy in the wake of
a surge in large scale cyberattacks targeting a vast range of
10T services. It is now evident that the lack of cybersecurity
in different components of smart healthcare (and other
10T applications) is manifested as multi-faceted security
flaws with ramifications ranging from privacy violations
to endangering patients’ health. Consistent implementation
of security and privacy preservation measures is now the
primary trend in the field, as it is now known that one-
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dimensional communication security protocols do not pro-
vide immunity against complicated attacks. Researchers are
constantly working to enhance the security of data acqui-
sition (in areas such as countermeasures against physical
attacks, side channel attacks, and malicious firmware over-
rides [41]) and data processing (in areas such as cloud-
oriented data privacy and security).

Societal Trends: In parallel to the aforementioned tech-
nological advances, emerging societal trends are also driv-
ing HIoT adoption. These technological and societal de-
velopments are indeed the systole and diastole of modern
healthcare infrastructure; the former assures feasibility and
practicality, while the latter promotes HIoT from a mere
nicety to an absolute necessity. At a societal level, the
requirement for personalized and continuous healthcare is
chiefly fueled by worldwide population aging [42]-[46],
which is expected to further increase ever-soaring healthcare
expenses. While the impact of aging populations is being felt
in most societies, developed countries are facing this most
urgently.

In parallel to these demographic changes, two additional
societal trends further drive the demand for HIoT. The first
of these is the expansion of middle-class families world-
wide [47], particularly in countries such as China, India,
and Brazil. With education and continuous access to the
information resources of the Internet, this technologically
savvy class is becoming more and more cognizant about
personal healthcare. This directly translates to a growing
market for a variety of devices spanning from smartphone-
based services to smart homes, smart wearables, Air Quality
(AQ) monitoring, etc. A second trend involves the increas-
ing concentration of physicians and medical care facilities
in large urban areas leaving sparse coverage in large geo-
graphically spread rural areas. In these latter settings, HIoT
technology can effectively expand the geographic footprint
of clinics and provide effective remote health management
solutions.

2.2 Application Demands and Challenges

While HIloT systems should be specifically designed to
fulfill the requirements of their target application, system

designers should be aware of the limitations that will act as
a barrier to proper functionality. We now highlight some
of the most common demands and restrictions of HloT
devices, which may or may not apply to every possible
application.

Physiological and Environmental Signals: The first
demand of any HIoT system is determining the type(s)
of physiological/environmental signals required for its in-
tended application(s). A healthcare management system
inherently requires a certain level of accuracy for acquired
signals, and clear boundaries for the noise imposed on those
signals [48]. Some of the major physiological attributes used
in more common applications are shown in Fig. 1, though it
should be noted that different applications generally require
various types of signals and data.

Decision Support: Decision support plays a crucial role
in an HIoT management system. The data collected from
various sources should be analyzed by the machine and
presented to healthcare professionals in a comprehensive
format, making the machine a support tool for the profes-
sionals [49]. The type(s) of decision support provided by
an application can vary based on its purpose. For example,
an application may require an automated warning system
that issues an alert on critical conditions. This alert may be
issued to the healthcare organization (HCO), to the doctor,
to the patient’s caregiver, or directly to the patient.

Latency Tolerance: Latency tolerance can also affect the
design of a system. Applications that deal with patients in
critical condition, who need constant real-time monitoring,
must be able to issue alerts with minimal delay [50]. Other
applications targeted for less critical conditions, however,
may be able to tolerate higher delay.

Computational Intensity: The volume of data gathered
by the system requires a proportional amount of compu-
tation power to analyze it. Factors such as the number of
sensors, signal sampling frequency, sample accuracy, and
overhead imposed by encryption schemes all affect the com-
putational power necessary for the system [51]. In addition,
applications requiring lower latency need higher computa-
tional capabilities. Machine learning algorithms used in a
system may also impose additional computational intensity,
independent from the absolute volume of data; for example,
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two algorithms working on the same input data may require
different computational intensity based on their nature.

Power Consumption: The sensors used to gather phys-
iological signals are generally wearable, meaning they will
be powered by batteries. Optimizing power consumption
to extend battery life (using both hardware configurations
and energy-aware algorithms [52], [53]) is a necessary step
toward ensuring continuous signal acquisition and monitor-
ing.

Data Communication Rate: In most HIloT systems,
physiological signals are transmitted to a local concentra-
tor through a WBAN [54]-[57]. The communication link
between the WBAN and the concentrator has a bandwidth
restriction, imposing a limit on the amount of data acquired
per unit time. Some pre-processing may need to be per-
formed on the acquired data before transmission to a local
concentrator. and, in some cases, the size of the data after
pre-processing can be greater than when it was transmitted
from the WBAN (e.g., some encryption schemes impose a
significant overhead).

3 HIoT EXAMPLE APPLICATIONS

We now highlight some common HIoT management ap-
plications and introduce a case-study that we will use for
highlighting the relevance of HIoT in the clinical healthcare
setting.

Activity Recognition: Activity recognition is prevalent
in various areas of the healthcare domain, where multiple
techniques are used for this purpose such as computer
vision [58], active sensor beacons, passive radio-frequency
identification (RFID) [59]-[62], WiFi [63], radar [64], etc.
Most traditional activity recognition platforms, however,
suffer from a high rate of false-positives when detecting
abnormal activity. Applying learning techniques, such as
Support Vector Machines (SVMs) [65] or dictionaries [66],
can help mitigate this problem. Some examples of activity
detection applications include: fall detection [34], [67], [68],
fitness tracking [69], [70], human localization and track-
ing [71], [72], posture recognition [73], and gait abnormality
detection [74], and multiuser activity recognition [75].

Stroke Rehabilitation: Rehabilitation among stroke pa-
tients is an important task that has been studied in many
aspects. Recent trends have increasingly turned to self-
managed rehabilitation [76]. Providing a virtual environ-
ment for patient rehabilitation [77], [78], predicting the
strength of muscles based on kinematics [79], and monitor-
ing a patient’s activities to provide feedback and assess the
patient’s recovery process [80] are all examples of how HIoT
can help with stroke rehabilitation.

Blood Glucose Monitoring: According to the Centers for
Disease Control and Prevention (CDC), approximately 30.3
million people (or 9.4% of the US population) across all ages
are currently living with diabetes [81]. Blood glucose mon-
itoring can be especially useful for diabetic patients, as it
can provide important information related to managing the
disease [82]. In addition to regular monitoring, 0T devices
can issue warnings in extreme/dangerous cases [83], pro-
vide suggestions on adherence to treatment regimens [84],
and even help track patients’ meals or make healthy eating
suggestions [85].
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Cardiac Monitoring: One out of three deaths in the US
are associated with cardiovascular disease, making it the
leading cause of death in the nation [86]. Personalized and
continuous cardiac monitoring (as opposed to conventional
in-hospital monitoring) plays an integral role in lowering
the fatality rate and associated expenses of cardiovascular
diseases [87]. Existing studies investigate the efficacy of in-
vivo and ex-vivo sensors in prediction and detection of var-
ious cardiac hazards such as arrhythmia [88], [89], long QT
syndrome [90], and sudden cardiac arrest (SCA) [91]. These
efforts have resulted in the recent emergence of noninva-
sive Food and Drug Administration (FDA)-cleared cardiac
monitoring systems that can help diagnose a variety of heart
rate variations (HRV)-related syndromes [92]. Regardless of
their increasing commercial popularity, cardiac monitoring
devices have recently been subject to scrutiny due to their
potential security and privacy flaws. New regulations are
expected to emerge to enforce more strict requirements on
these systems [93].

Respiration Monitoring: Patient respiratory activity is
a clear indicator of their overall health. Respiration moni-
toring devices are categorized as either contact (most com-
mon [94]) or non-contact [95]. Monitoring newborns for
sudden infant death syndrome [96], monitoring the effects
of medication(s) on respiration [97], and asthma patient
monitoring [98] are all examples of 10T respiration moni-
toring devices.

Sleep Monitoring: Monitoring patients during sleep is
another useful implementation of 10T devices. Some appli-
cations include monitoring and classifying sleep stages [99],
monitoring vital signs during sleep [100], and detecting
sleep disorders such as obstructive sleep apnea [101], [102].

Blood Pressure Monitoring: High blood pressure cur-
rently impacts approximately 45.6% of US adults [103]
and, as a result, is a crucially-important health concern to
address. loT-based general hypertension monitoring sys-
tems are already in use [104], while some applications can
even take control of hypertension decision-making pro-
cesses [105]. Other blood pressure related issues, such as
hypotension (low blood pressure), can also be monitored by
10T devices [106].

Stress Monitoring: Many systems have been developed
to monitor various types of stress, and even intervene if
necessary. While low-stress levels are normal, high-stress
levels can lead to serious health issues [107]. Some appli-
cations attempt to reduce stress by offering suggestions on a
mobile device [107], [108], monitoring post-traumatic stress
disorder patients [109], and helping people on the autism
spectrum manage their emotions [110].

Medical Adherence: Ensuring that patients adhere to
their healthcare/medicinal regimen is a grand challenge in
healthcare [111], [112]. Monitoring adherence for elderly pa-
tients [113], people with dementia [114], or general medical
adherence monitoring [115]show how IoT devices can help
ensure that regimens are followed properly.

Alzheimer’s Disease (AD) Monitoring: AD affects 5.3
million people in the US and incurs an estimated annual
cost of $200 billion [116]. AD patients generally require con-
stant, round-the-clock care. loT-based devices can provide
considerable assistance to caregivers in many areas, such
as early detection of dementia [117], reporting anomalous
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activities [118], monitoring patient location, and providing
task reminders [119].

Parkinson’s and Huntington’s Disease (PD/HD) Mon-
itoring (Case Study): Parkinson’s and Huntington’s are
neurological diseases characterized by movement disorders.
It is estimated that more than 900,000 individuals in North
America will suffer from PD by 2020 [120] while HD cur-
rently affects more than 20,000 individuals in the US [121].
Body worn HIoT sensors provide an effective mechanism
for monitoring the movement symptoms associated with
PD/HD and are an promising option for assessing disease
status, progression, and medication efficacy.

To provide concrete examples of the ideas discussed
throughout the paper, we use a PD/HD case study from
our recent and ongoing research [124], [125]. Motivating
background information on these disease conditions and the
related demands and challenges are summarized here. Sub-
sequent sections in the paper highlight examples of relevant
components from the case study through brief remarks.

Typical symptoms of PD/HD are depicted in Fig. 2.
Parkinson’s is characterized by rest tremors, slowness in
movement, rigidity, and postural instability. Huntington’s
is a genetic disease marked by jerky movements in the
body (referred to as chorea), unsteady gait, and cognitive
impairments [126]. Both diseases are progressive; after
onset, patients encounter increasingly severe symptoms as
time advances.

PD and HD are currently considered incurable. Al-
though medications can be used to manage symptoms, their
effect is neither universal nor complete. The overall quality
of life is often severely degraded for PD/HD subjects. Dis-
ease progression and efficacy of medications are currently
assessed subjectively by physicians via in-clinic-tests that as-
sign patients a score on the Unified Parkinson’s Disease Rat-
ing Scale (UPDRS) [127] or the Unified Huntington’s Disease
Rating Scale (UHDRS) [128]. These ratings are subject to
variability because they are based on sporadic observations
that sample relatively short durations of time and because of
inherent variability in human assessments. There is, there-
fore, a strong desire to develop sensor-based quantitative
measures and scales that can be used to objectively assess
disease progression and efficacy of treatments. This clinical
application is ideally suited for HIoT because miniaturized
unobtrusive sensors for movement have become ubiquitous
and cheap due to the smartphone revolution, as have cir-
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Fig. 2. Graphics showing typical symptoms of Parkinson’s (left) and
Huntington’s (right) disease that are the focus of the multisensor case
study that we will use to illustrate the ideas discussed in this paper.
Based on [122], [123].
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cuits for low power wireless communication and Internet
connectivity infrastructure.

4 SYSTEM ARCHITECTURE

The realization of inexpensive, unobtrusive, and reliable
systems that can meet the requirements discussed in Sec-
tion 2.2 necessitates a robust and inclusive design frame-
work. To this end, various HIoT system architectures have
been discussed in the literature [129]-[133]. In this section,
we investigate the general architecture of typical HIoT sys-
tems [10] (as seen in Fig. 3) and outline each of the layers.
Each layer is then discussed in more detail in subsequent
sections.

Data Acquisition, Sensing, and Transmission: The first
HIloT component is data acquisition, where 10T devices and
sensors measure physiological and environmental signals.
These devices are connected to a WBAN, generally through
an intermediate data aggregator such as a smartphone [36].
The primary function of the sensors is to sense and gather
data, but many are also now able to preprocess data be-
fore transmission. Data acquisition is further detailed in
Section 5.

Data Aggregation/Preprocessing Cloudlet: The data
gathered in the acquisition and sensing layer are transmitted
to an loT concentrator through a WBAN (using mediums
such as WiFi, Bluetooth, or ZigBee Standard). These con-
centrators are responsible for gathering all the sensed data
and transmitting it to the HCO data center within the delay
tolerance requirements of the application. To fulfill this
task, concentrators need to be more computationally capable
(compared to devices in the previous layer) and must have
a certain amount of local storage for data. We detail data
aggregation and preprocessing in Section 6.

Cloud Processing and Storage: Once the data arrives at
the HCO data center, it can be processed using advanced
algorithms to provide decision support including data sum-
marization and creation of visual representations. Since the
cloud processing and storage layer is responsible for various
tasks, we discuss it in multiple sections. Analysis of data
using ML algorithms to extract useful insights is studied in
Section 7, and data visualization is explored in Section 8.

Privacy, Security, and Quality of Service (QoS) Man-
agement: As highlighted in Fig. 3, the entire system must
provide robust security and privacy guarantees while sat-
isfying the QoS requirements of applications. Overempha-
sizing security within a single component (typically com-
munication) does not translate to improved overall security
because adversaries can exploit any susceptibility to infil-
trate not only the HIoT system but also other connected
services. The implementation of such an inclusive security
structure, however, is challenging. Aside from the com-
mon limitations of 10T applications (such as meager energy
budget, on-site deployment, and large-scale), HIoT services
are subject to domain-specific complications, such as, the
inherent sensitivity of health data, highly dynamic roles
of stakeholders, heterogeneity in electronic health records
(EHRs), and potentially grave consequences from failures.
Section 9 further lays out the details of HIOT security.
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5 DATA ACQUISITION AND SENSING

In this section, we review some of the most commonly
used sensors and investigate their invasiveness, cost, and
accuracy.

5.1 Activity Detection Sensors

Activity detection is typically conducted through Iner-
tial Measurement Units (IMUs), which are composed of
multi-axis accelerometers, gyroscopes, magnetometers, and
force sensors. IMUs can be implemented as wearable sen-
sors [134] or sensors integrated into the environment [135].
Wearable sensors are typically inexpensive and can cater
to a broad range of applications; multiple wearable sensors
can easily be deployed to determine the relative position
of body parts [134]. In some cases, wearable sensors are
inconvenient for long-term use as their bulk and weight,
coupled with their requirement to be in close proximity to
the patients, impede the acquisition of continuous and real-
time data. In these situations, ambient sensing techniques
can be employed (e.g., cameras and RF sensing). Cameras
are relatively easy to set-up and employ, as they do not re-
quire extensive changes to the environment. They, however,
suffer from limited line-of-sight and pose privacy concerns.

5.2 Respiration Sensors

Respiratory motion can be captured using accelerometers
or piezoelectric materials. The solid-state nature of piezo-
electric sensors enables them to be reliable, small, low-
power, and non-invasive. Authors in [136] demonstrate
a complementary metal-oxide-semiconductor (CMOS) sen-
sor for respiration monitoring that is implemented using
a polyvinylidene-fluoride (PVDF) material to ensure bio-
compatibility. The sensor consumes up to 800 W and, since
direct contact with the skin is not required, can be embed-
ded inside a jacket or worn around the chest. Alternatively,
camera-based sensing solutions apply image processing al-
gorithms to videos, capturing patients’ respiratory motions.

Instead of tracking the slight motions of the torso (which has
been demonstrated to be a demanding task), the majority
of the proposed works rely on analyzing variations in the
ambient light caused by body movement [137], [138].

5.3 Heart Beat Monitoring Sensors

Generally, heartbeat monitoring techniques are classified
into four groups: (i) electrocardiography (ECG) (ii) ballis-
tocardiography (BCG) (iii) phonocardiography (PCG), and
(iv) photoplethysmography (PPG).

Holter devices [139] are common tools that capture
ECG data through electrodes over long periods of time
with various sampling frequencies. Non-contact, capacitive-
coupled electrodes are also commonly used for ECG signal
acquisition as they do not require direct contact with the
skin, enabling their use as wearable sensors embedded in
clothing [140]. These less invasive methods mean trading
accuracy for comfort/wearability. While BCG signals can
be captured in numerous ways, accelerometers are typically
the primary choice [141]. Accelerometers can be used as
wearable sensors if worn in proximity to the heart. While
PCG signals are typically captured by microphones, piezo-
electric sensors installed on the throat [142] and fiber optic
sensors [143] can also be used. Finally, due to low-cost,
non-invasiveness, and high reliability, pulse oximeters are
generally used to capture PPG signals. Various physiological
parameters, including Heart Rate Variability and even ECG
signals, can be extracted from PPG signals [144]. Pulse
oximeters, however, are not suitable for long-term contin-
uous monitoring as they are typically worn on a fingertip.

5.4 Blood Pressure Sensors

Authors in [145] propose a wireless and battery-less sensor
to be surgically implanted in the femoral artery to monitor
hypertension patients. A second, bulkier device needs to
be worn by the patient to power and interrogate this in-
vivo sensor. Although invasive, the proposed solution is
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TABLE 1
A list of commonly used sensors in various clinical HIoT applications.
The qualities listed under ‘characteristics’ are relative. For example, for
activity detection applications, RF-based sensing typically yields lower

less invasive monitoring can be implemented by deploying
flexible, small, and stretchable sensing patches that analyze
sweat samples [150].

accuracy than wearables. Hence, it includes the ‘low accuracy’
attribute. This should not imply that RF accuracy is not practical.

Spectroscopy is widely used as an alternative technique
to provide a less invasive but less accurate BGM solution.
Chemical composition of the blood (including glucose level)

Application Sensor Characteristics changes its ability to absorb, reflect, and scatter light beams.
Wearable & 3 Inexpensive Spectroscopy uses this to estimate the blood glucose level.
Environment IMU 7 Obtrusive Therefore, optical-based spectroscopy sensors typically en-
Activity RF fﬁ;ﬁt&sﬂ;’; compass a Near Infra Red (NIR) light source and a pho-
Detection 3 Easy-to-Setup ton counter, which are installed on opposite sides of the
Camera 7 LoS Limitation tissue [151]. Table 1 provides a summary of aforementioned
7 Privacy Concerns sensing technologies along with their primary strengths and
Accelerometer & 3 Low Power shortcomings.
. ] - 3 Accurate
Respiration Piezoelectric Materials 7 Obtrusive _ _ o
Detection 3 Inexpensive 5.6 Wearable Multisensors in the PD/HD Clinical Study
Camera 7 Low Accuracy The PD/HD case study, outlined in Section 3 provides an
7 Noise Sensitivity excellent example of how multiple sensing modalities can be
WeETgifrﬁ dEeSG 37'\1%\/3\1'(:05”0:;?? combined in one sensor. In this study, BioStampRC sensors
Accelorometers (B00) 3 Inexpensive from MC10 In_c. are us_ed, which are Ilghtwelght(_ 7 grams)
Heartbeat 7 Noise Sensitivity and upt_)btruswe devices capgb_le Qf operating in multiple
Monitoring Accelerometer, 3 Unobtrusive modalltles._The sensor (spe(_:lflcatlons shown m_TabIe 2)
Fiber Optics, 7 Noise Sensitivity operates with various sampling rates and dynamic ranges
& Microphone (PCG) i with high-power and long-duration recording capabilities.
Pulse Oximeter f’o\ftrrsjsti'\'/ee The sensors are applied to subjects’ body at five different
: 3 Unobirusive locations as depicted in Fig. 4. We primarily utilize the
Blood Pressure In-Vivo 7 Invasive sensors’ accelerometer to obtain data, sampled at 31.25Hz,
Monitoring PWV and PTT 3 Non-Invasive over the duration of 46 hours.
Sensors 7 Noise Sensitivity
slooa Gluose | IO 3 e
Monitoring . 3 Non-Invasive : ; Chest
Optical Sensors Right Proximal
7 Low Accuracy Anterior Left Proximal
Forearm Anterior
A A B Forearm
comfortable and suitable for long-term monitoring. Less )
intrusive techniques, which operate based on fundamentals Ast'gntor An';(zfrtior
of wave propagation dynamics in fluids, are also proposed Thigh Thigh

in the literature. These techniques typically measure Pulse
Wave Velocity (PWV) or Pulse Transit Time (PTT) to calcu-
late blood pressure (BP). Data samples are collected using
cuffless PPG, ECG, and Impedance Cardiography (ICG)
sensors, which can be used as wrist bands and/or be
worn around the chest [146], [147]. Relying on PTT poses
additional challenges to BP monitoring; one challenge arises
from the dependence of PTT on heart rate, age, gender, and
body shape of the patients. These obstacles, however, can be
partially addressed by employing suitable signal processing
solutions [147], [148].

5.5 Blood Glucose Monitoring Sensors

Blood Glucose Monitoring (BGM) can be categorized into
two different classes: (i) electrochemical-based and (ii)
optical-based. The former analyzes the chemical content
of interstitial fluids, while the latter involves spectroscopy
techniques. Electrochemical sensors are typically more accu-
rate but are more invasive. Common models of electrochem-
ical sensors require blood samples, typically obtained from
the fingertips of patients. Electrochemical-based sensors can
also be implanted underneath the skin [149]. Because of
the correlation between glucose level in sweat and blood,

Anterior View

Fig. 4. A graphic showing five different locations on the body for applying
BioStampRC sensors in our PD/HD case study [152] (left) and a partic-
ipant wearing sensors at these locations for in-clinic assessment [125]

(right).

6 DATA COMMUNICATION, AGGREGATION, AND
PRE-PROCESSING

In this section, we investigate two main aspects of HloT
communication: (i) connectivity, and (ii) data aggregation.

6.1 Data Communication

A WBAN consists of multiple low-power, resource-
constrained devices that are connected to a more compu-
tationally capable device, such as an Access Point (AP),
through a low-range and low-rate wireless link. The AP
performs multiple pre-processing, data aggregation, and data-
fusion operations on the collected data. Most importantly,
it provides Internet connectivity. Broad trends in communi-
cations for HIoT have been surveyed in [15]. The majority
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TABLE 2
Capabilities of the BioStampRC sensor from MC10, Inc. used in our
case study. The sensor operates in 6 modes. g indicates the
acceleration due to gravity (9.81 m/s2).

TABLE 3
A comparison of two commonly used communication protocols for
WBAN implementation, along with with their advantages and
disadvantages within the context of smart healthcare.

of implementations in healthcare applications rely on either
BLE [153]-[155] or ZigBee [156], [157].

BLE specifically targets low-rate, low-power, and low-
range loT communications [158]. It operates in the 2.4 GHz
Industrial, Scientific, and Medical (ISM) frequency band,
and can provide up to 2Mbps bandwidth. To suppress
the adverse effects of interference and fading, the protocol
leverages adaptive frequency hopping techniques. Many
existing portable devices such as smartphones and laptops
are shipped with embedded BLE modules [159]. BLE, how-
ever, does not provide multicast communication, which can
be crucial to many applications. Furthermore, as it only
supports single-hop star topology, it cannot be adopted by
multi-level hierarchal architectures. This limits its scalability
and raises security concerns [158].

ZigBee is developed atop the IEEE 802.15.4 standard. It is
designed for low-power, short-range, and low-rate data con-
nectivity. Unlike BLE, ZigBee supports mesh architecture,
which results in more robust implementations. Furthermore,
it supports multicast [158]. Table 3 provides a comparison
between ZigBee and WiFi in the context of smart healthcare
applications.

Note that the composition of this network should be
defined prior to the application and verified after the setup.
In our PD/HD case study, the number of sensors, their
locations on the body, recording modes, and sampling rates
are determined through the Investigator application before
the network setup and their functionality is verified after
the sensors are attached.

6.2 Data Aggregation and Pre-processing: Front-end

For data aggregation and pre-processing, an aggregator
(typically added as a functionality of the AP) is used to col-
lect and combine all sensed data before transmission. This
step also includes performing preliminary computations
on the data. This concept has seen more interest recently,
especially with the introduction of fog computing [165].
Fog computing provides multiple benefits including low

Sampling . Recording Protocol/ Advantages/ Example
Mode Dynamic Range . . L.
Rate (Hz) time (h) Characteristics Disadvantages Applications
31.25, 50, BLE 3 Ubiquitous
| Accel. 2, 4,or 8g 8-35 EEG [160]
100, 200 / 3 Low-Power
: IMU [155]
I ECG 195. 250 02V 17-35 2.4GHz ISM 3 Low-Delay
, i PPG [154]
2 Mbps 7 Single-Hop
11 EMG 250 0:2V 17 . . EEG [161]
100 m 7 No Multicasting EMG [162]
y Aecel. 50 2, 4o0r 8g 11-22 Low-Energy 7 MAC Inflexibility
ECG 125, 250 0:2V 3 Multi-Hop
y Aecel 50 2, 40r 8g 1 ) 3 6LOWPAN Compatibility
ZigBee .
EMG 250 0:2V / 3 Self-Healing EEG [160]
3 Multicastin ECG [160
Accel. P— 2, 4, 8, 169 2.4GHz ISM . ’ o)
Vi ! Off 250, 500 2.4 250 kb 7 Static Power Management PPG [163]
Gyro 100, 250 Y Y ’ ps 7 Rerouting Delay IMU [164]
1000, 2000 °/sec 100m
7 Crowded 2.4 GHz Band
7 Poor Coexistence with WiFi

latency in some applications (more critical in emergency
medical situations) [166], mobility support and location
awareness [167], and reduced power consumption by re-
placing cloud communication with local computation (as
communication consumes orders-of-magnitude more power
than computation) [168].

Other roles and benefits of this stage include condensing
data from multiple sensors into single packets to reduce
communication overhead, removing redundant data that
do not provide useful information for the system, and
representing data from multiple sources using a single value
(such as their arithmetic mean or median). For example, in
a 12-lead ECG data acquisition system, it is shown that the
same intervals from different leads can be median filtered to
provide a final, single value, thereby reducing data volume
by a factor of 12 [90]. Additionally, in many applications,
data from many different sources complement each other
to provide a bigger and better picture of the situation. The
aggregation process keeps data from all sources in sync with
each other so that the concurrency of events recorded by
different sensors are maintained. The aggregation and pre-
processing stage tends to lose information.

6.3 Data Aggregation and Pre-processing: Back-end

Many HIoT applications resort to cloud-based solutions
not only to circumvent the challenges of processing large
data volumes but also to take full advantage of cloud’s
compatibility with off-the-shelf data analytics, always-on
property, scalability, and affordability [169]. Particularly, the
cloud can provide permanent data storage services (ultimate
data aggregation), which are the basis of data analytics and
inference. Long-term data storage is also a prerequisite for
history-based verification mechanisms that can evaluate the
veracity of data by comparing them to the expected values.
Long-term data are also valuable assets to HCOs and other
entities. For example, health insurance agencies use such
data to evaluate the overall health of applicants and charge
them accordingly [170]. Cloud storage also provides a point
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of access to retrieve information.In our PD/HD case study,
all of the data recorded by the sensors are eventually trans-
ferred to and stored in the cloud. After the data is uploaded
to the cloud, researchers can access, preview, or download
it through the Investigator portal on demand, as seen in
Fig. 5. Each subject’s information can easily be downloaded
without any loss of information.

HCOs can opt for public, private, or hybrid cloud ser-
vices. Public servers can simultaneously host multiple ap-
plications from different entities. This reduces operational
expenses but increases the risks of privacy leakage. Alterna-
tively, HCOs can set up and maintain their private servers
trading off additional expenses for improved security. As
a compromise between the two implementations, it is also
feasible to outsource demanding computations to public
servers while processing sensitive data locally in a private
setup. From another perspective, cloud-based servers can
be centralized or distributed. The latter can reduce mainte-
nance costs by taking advantage of geo-diversity. However,
distributed servers are known to be more difficult to manage
and require more complicated task distribution and resource
allocation [171].

7 ANALYTICS & INFERENCE

The volume of healthcare data generated in recent years
from bio-sensors, EHRs, computerized physician order en-
try, social media, and administrative entries, was estimated
to be 153 Exabytes in 2013 and is expected to reach 2000
Exabytes in 2020 [172]. This impressive accumulation of
data in HIoT has created a conducive environment for
data analytics and inference algorithms, which are now
used in a variety of healthcare applications for anomaly
detection, prediction of future health events, early detection
of diseases, cost reduction, improved accuracy in clinical
diagnosis, and clinical decision support [173], [174].
Despite its potential to revolutionize clinical HIoT, inte-
gration of data analytics and statistical inference techniques

Fig. 5. Screen shot of MC10
web portal used in our
PD/HD case study (named
Sensor-MD Condensed 2).
We can identify six sub-
jects with unique subject
ID (005), sex (M/F), and
age (years) indicated on the
right side. Total duration of
recorded data is indicated
on the right of an icon with a
green tick mark. Clicking on
the green tick marked icon
downloads the data which
can be utilized for analy-
sis. On the far right, we
can observe the statistics of
P the study showing the total
number of subjects in the
study followed by graphs
showing number of male
and female participants and
age distribution.

0 68%-(&76

® 0DOH
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in clinical practice has been slow. The few documented
successful examples are localized within HCOs with rich
datasets. We dedicate the remainder of this section to pro-
viding an analysis of the two key drivers, which can enable
a widespread adoption for clinical HIoT. In Section 7.1,
we provide a brief overview of the existing and emerging
algorithms that can form the backbone of clinical HIoT,
followed by Section 7.2, where we study the issues arising
due to the availability of the data that can be used in these
algorithms.

7.1 Algorithms

Data analytics and inference algorithms can make HIoT an
indispensable decision support tool for healthcare profes-
sionals. Although a good portion of the algorithms used
today has existed for decades (e.g., Support Vector Machines
and decision trees), they have not seen widespread use until
the recent explosive growth in the computational capabil-
ities of computing hardware [175]. This growth made ex-
tremely computationally-intensive algorithms, which were
previously considered unusable, practical in cloud com-
puting platforms with vast resources (e.g., Amazon EC2).
Application of these algorithms has also been accelerated
due to the wide availability of open-source software tool-
boxes that provide rapid development environments. Most
of these algorithms are not only good at discovering explicit
relations among data but also the latent and hidden features
that are very difficult to detect by human specialists [176].
Most of the algorithms that existed in the previous
decade required intricate knowledge of the features that
were associated with a health condition; for example, the
study in [90] attempts to use inference algorithms to deter-
mine the existence of known cardiac conditions in patients.
They start their application by extracting features from
ECG signals. This implies that the success of the inference
depends strongly on the understanding of the features.
The emerging deep learning (DL) network-based inference
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Fig. 6. Classification of the activity states in our PD/HD case study
as percentage of time spent (total duration 46 hours) lying down,
sitting, standing, and walking for Control, PD, HD, and prodromal Hunt-
ington’s disease (pHD) participants. “n” is the number of participants
analyzed [125].

techniques largely eliminate this feature extraction step by
utilizing a network that not only provides inference, but also
extracts the features. DL-based inference applications have
seen significant recent success in clinical practice [175], [177],
however, their success has been restricted to applications
that can provide the vast amount of data that deep networks
demand to achieve acceptable accuracy.

Algorithmic nuances of data analytics and inference
techniques pose additional obstacles against their commer-
cialized use in clinical HIOT. A major challenge concerns the
interpretability of an algorithm’s decisions. In fact, physicians
are often more interested in the algorithm’s thought process
as opposed to its final decision as this enables them to better
assess the reliability of the inference [178]. Additionally, the
reliance of analytics and inference techniques on statistical
analysis sometimes limits their ability to model outliers,
which are often of interest in the medical diagnosis of
rare conditions. The evolving nature of progressive learning
algorithms also complicates approval processes for clinical
deployment; although the FDA has recently passed new
regulations, where algorithms are cleared based on their
developing teams [179].

Data analytics for our PD/HD case study involved both
classification and regression [125]. The former involves cat-
egorizing patient activity into one of four classes: fLying
down, Sitting, Standing, Walkingg. In our study, activities
were classified every five seconds and the activity states for
each interval was identified by determining the dominant
acceleration axis (the axis with the largest mean accelera-
tion). Based on the dominant orientations in chest and thigh
sensors, activity states were categorized as lying down,
sitting, and upright. A normalized auto-correlation-based
analysis [124] was performed on the upright state intervals,
which were further classified upright durations into stand-
ing and walking intervals. Figure 6 shows the proportion
of time (over the full duration) subjects spent in different
activity states.

Our PD/HD case study uses regression to analyze (poor)
inter-limb coordination in HD subjects. Sensor data from a
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Fig. 7. Data analysis performed for our PD/HD case study to assess
inter-leg coordination. The plot shows the normalized vector cross-
correlation [124] of the recorded accelerations from left leg and right leg
sensors as a function of time lags for a HD and a control participant. A
2-step cycle is annotated and highlights stronger peaks for the controls
at the one and two step intervals compared with participants with HD.

10-meter walk test was used. A normalized cross-correlation
of recorded acceleration from the left and right leg sensors
indicated coordination between the legs while walking. As
shown in Fig. 7, for the control participant, the strong peaks
in the cross-correlations at the 1-step and 2-step durations
are indicative of the rhythmic nature of normal walking,
whereas the HD participant’s peaks are much smaller and
poorly defined due to lack of coordination between the
legs [124]. Apart from quantifying and visualizing leg co-
ordination, this example specifically illustrates the benefit
of using multiple body-worn sensors for the analysis.

7.2 Data Availability

The algorithms described in the previous subsection re-
quire a significant amount of well-structured clinical data
to achieve useful levels of accuracy. Providing such data
presents multi-faceted challenges, specifically, with respect
to widespread data availability and heterogeneity.

A major data-related challenge in clinical HIoT is assur-
ing the generality of results. Most available pilot studies in
the literature are developed and tested on small datasets
(relative to the actual patient population size) [180]. There-
fore, their applicability and efficacy in real-world scenarios
remain uncertain; especially, considering that health and
disease states can be highly correlated with many personal
parameters such as gender, age, and ethnicity. This problem
is even more acute for rare diseases. Consequently, data ana-
lytics approaches have the best chances for success if clinics
and hospitals share their data with algorithm developers.
The flow of such information is, however, fraught with
unresolved legal and ethical complications. An example of
this is the collaboration between Google’s DeepMind and
the British healthcare provider, Royal Free, which shared
its acute kidney injury dataset with DeepMind without ac-
quiring patients’ explicit consent. The decision led to official
scrutiny, which concluded that the deal was illegal [181],
[182].
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To take full advantage of the existing medical knowl-
edge, it is common sense to use historical medical data as
input to inference algorithms. Combined with the data that
is being streamed from the HIloT platforms, this amalgama-
tion of data can provide an effective data source for modern
inference algorithms. However, historical data sources are
diverse and highly unstructured as part of the data must be
inferred from EHRs, insurance claims, medical textbooks,
and scientific papers [183]. The language used in these
documents can be vague, out of chronicle order, and in-
complete. To cope with these challenges, NLP is often used.
However, regardless of their remarkable progress in recent
years, current NLP technologies are not efficient enough in
these applications, even when supported by the resources of
tech giants [180].

This data heterogeneity problem is exacerbated when we
consider the fact that even the data obtained from the
same HIoT platform can be highly-heterogeneous within
itself. For example, the MC10 sensors used in our case
study continuously evolve and additional clinically relevant
attributes can be measured with every new generation of
sensors, which effectively adds a new “input dimension” to
the existing data. Therefore, algorithms must be designed to
cope with not only an increasing volume of data, but also
an increasing variety.

8 VISUALIZATION

The primary objective of visualization is to present the
results of data analytics and inference algorithms in the form
of intuitive tables, charts, graphs, etc. to enable rapid and
intuitive absorption and interpretation of the patient data
by healthcare professionals. Compared to sporadic in-clinic
measurements, HIoT datasets are large and visualization is
an absolute necessity. Physicians seeing between 20-40 pa-
tients a day have no way to absorb and interpret the reams
of numerical data that HIoT sensors can generate, effectively
presenting the results via visualizations is also a challenging
task [36]. Including too much detail can distract the attention
of the user from critical information, while vital data can
be omitted in aggressive summarization. Although visual-
ization in clinical HIoT applications is primarily directed
toward physicians, there is also a need to visually present
some information to patients to facilitate understanding and
improve engagement.

Visualization schemes can be static or interactive.
Static visualization techniques range from lists/tables,
plots/charts, graphs/trees, and pictograms to more com-
plex formats showing spatial data, multidimensional data,
or causal relationships [184]. Interactive methods are espe-
cially useful when visualizing information that simultane-
ously incorporates multidimensional temporal signals and
generic static information.

8.1 Static Visualization

Systems such as hGraph [185] and its related programming
libraries (such as the one introduced in [186]) provide vi-
sualizations by combining in-clinic, activity, sleep, blood
pressure, and nutrition data. Other systems such as Time-
Line [187] provide an EHR visualization, which shows all
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related static data (such as a list of medical problems, general
information, and patient status) on a timeline. Another
study targeting clinical information is presented in [188],
where a real-time bedside graphic display is developed.
The display includes personal information, lab results, vital
signs for specific periods of time (e.g., over the past 24
hours), and Intensive Care Unit (ICU) information.

Choosing the proper visualization format ensures that
medical professionals do not miss critical information. In
our PD/HD case study, patient tremors over the period of
one hour are plotted using a radial plot (as shown in Fig. 8).
This allows easy comparison of tremors between healthy
subjects and PD patients while identifying the difference in
patient tremors when they are on vs off their medication. As
more data becomes available, both for the individual, and
across individuals, this figure can be further enhanced by
adding in bounds for the “normal” range for tremors, or by
customizing the presentation for each individual. Compared
with the raw sensor data which for a single sensor is 8.2
MB over an hour and 196.1 MB over a 24 hour period
(total across 5 sensors is approximately 1GB per day), the
summarized presentation in the visualization is much easier
for physicians to absorb and interpret.

Studies such as [189]-[191] focus on providing feedback
on personal health status through visualization. This infor-
mation may be presented in different forms, such as an
abstract art display of physical activity [192], charts and
graphs [190], or even through a physical form with data
sculptures [193].

8.2

Many applications focus on providing an interactive envi-
ronment in their visualization scheme. For example, Care-
Cruiser is an interactive system that visualizes the effects of
applying patient treatment plans [194]. The system shows
the treatment plan progress and depicts the patient’s con-
dition at any given point during treatment. The system
also shows hierarchical data (nesting of treatment plans
and sub-plans), temporal data, and qualitative data, and
provides a means to compare multiple patients. Another
interactive system is Medical Information Visualization As-
sistant [195] that allows medical experts to obtain relevant
information in a context-related environment. A more specific
visualization called Interactive Parallel Bar Chart (IPBC)
is proposed in [196], which depicts data gathered from
multiple hemodialysis sessions in a 3D bar chart. Numerical
data over time of each hemodialysis session is shown in one
row and different sessions are bundled together to create the
final plot.

Interactive Visualization

9 SECURITY AND PRIVACY CONSIDERATIONS

System security and data privacy are the highest priorities
in a medical system and should be considered during ev-
ery phase of system design. Additionally, designers must
comply with the Health Insurance Portability and Account-
ability Act (HIPAA) [197], which mandates that all service
providers ensure the privacy of their clients. In this section,
we discuss security and privacy considerations for each
layer of our proposed HIoT system.
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Data Acquisition and Sensing: Strict energy-budget,
on-field deployment, and limited computational resources
leave data acquisition level vulnerable to a wide spec-
trum of cyber threats such as eavesdropping and man-
in-the-middle attacks, making it an easy target for adver-
saries (particularly insiders [198]). Lightweight cryptogra-
phy is the main countermeasure against attacks. It is very
effective in protecting both the security and privacy of
smart healthcare sensing; simple but effective algorithms
such as Advanced Encryption Standard (AES) and Elliptic
Curve Cryptography (ECC) can be tailored for resource-
constrained devices. These techniques, however, leave the
system vulnerable to side channel and hardware attacks.
Hence, in addition to cryptography-based solutions, HloT
devices must be equipped with platform integrity attesta-
tion mechanisms for protection against hardware/software
tampering attacks [199].

Communications: Adversaries primarily target smart
healthcare communication because (i) its properties are
better-known (in comparison to other components), (ii) it
can be addressed remotely, (iii) due to its interconnection
with other networks (e.g., home network) it can provide
a launchpad for targeting non-HIoT applications, and (iv)
well-known attacks such as Denial-of-Service (DoS) can
result in grave consequences.

Cryptography is the premise of many existing commu-
nication security measures. Particularly, AES and ECC are
suitable for the resource-constrained nodes in smart health-
care systems [200]. Both BLE and ZigBee utilize AES in their
link layers. The network layer can be effectively protected
using IPv6 over low power wireless personal area networks
(6LoWPAN), since it can incorporate the Internet protocol
security (IPSec) protocol. IPSec improves communication
security, regardless of the protective mechanisms imple-
mented in the application layer [201]. Finally,to achieve
end-to-end encryption, the application layer must use the
constrained Application Protocol (CoAP), as it utilizes Data-
gram Transport Layer Security (DTLS) and IPSec. DTLS
can be considered as the User Datagram Protocol (UDP)-
compliant implementation of the transport layer security
(TLS) protocol.

Cloud Storage and Processing: Modern authentication
mechanisms aim to replace conventional password-based
solutions, as passwords are susceptible to many attacks
(e.g., brute force and dictionary attack) and can become an
inconvenience (especially, in HIoT, where a portion of users
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Fig. 8. Visualization example from our
PD/HD case study. A clock based visu-
alization shows the variation in at-rest
tremor magnitude in individuals with PD
and compares it against controls and
between on and off medication states.
The tremor magnitude is quantified as
the fraction of power in the 4 to 6.5 Hz
frequency band (radial axis) for the prin-
cipal axis acceleration recorded from
MC 10 sensors affixed to the forearm
over an hour duration (angular axis): (a)
PD vs control (left), and b) PD ON vs
OFF medication (right).

are elderly and disabled people). Two-factor authentication
(TFA) is a common methodology today for healthcare sys-
tems to avoid a breach in case one key is compromised. TFA
requires the user to enter a password and a secondary piece
of information (e.g., a code obtained through a cell phone
call or a dedicated device) for successful login. Due to the
sensitivity of collected data and EHRs, HloT implementa-
tions must ensure secure access to data. The conventional
access control techniques, however, are proven inefficient in
HIoT as it involves a large number of stakeholders with
many dynamic roles. Attribute-based access control can
circumvent many of these limitations but it fails to dynami-
cally adjust privileges (say) in an emergency situation [202].

To protect data during processing [203], Advanced en-
cryption schemes, such as Fully Homomorphic Encryption
(FHE) have been proposed. While there is research showing
the feasibility of such schemes, their computational inten-
sity renders them impractical. Additionally, applying multi-
layer isolation (Operating System (OS), Virtual Machine
(VM), and hardware) can reduce the odds of data leakage in
public servers both in the data processing and data storage
layers [169]. Finally, it is equally important to stress the non-
technical aspects of HIoT security. HCOs must form security
teams to oversee the security of the system and provide
timely responses to threats and attacks. Stakeholders must
be trained, and HCOs must be ready to negotiate with
attackers to protect the data [204].

In the PD/HD case study, participant privacy is carefully
managed. Within the MC10 portal where the sensor data for
the participants is stored and made available for analytics,
participants are identified only by assigned ID numbers.
The portal provides basic demographic information such
as sex and age (see Fig. 5) but does not provide any other
personally identifying information. EHRs with personally
identifying information used in the clinic are maintained in
a separate RedCap database [205] that is HIPPA compliant.
This partitioning of data effectively ensures the availability
of the sensor data for analytics without compromising the
privacy of the participants. Of course, the partitioning of the
data notwithstanding, the study is performed in compliance
with the Institutional Review Board (IRB) requirements:
informed consent is required from all participants and ev-
eryone accessing the data is required to undergo human
subjects training certification.
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10 CONCLUSION AND VISION FOR THE FUTURE

This paper reviewed the state-of-the-art in Healthcare 10T
(HIoT) technologies, particularly focusing on clinical appli-
cations of HIoT. It presented HIoT through the lens of three
of its primary components: (i) sensing and data acquisition,
(if) communication, and (iii) data analytics and inference.
As the underlying 10T technologies in HIOT become more
mature, each one of these three components will indepen-
dently witness rapid progress within their own domain.
Data acquisition and sensing technologies will benefit from
future VLSI technologies that require lower battery power
for their operation, while communication standards will
continuously advance to provide higher communication
throughput with decreasing power consumption demands
from the sensing networks. Intelligent energy-aware oper-
ating systems will also be critical to harnessing the energy
demand of end-devices [206]. Future cloud platforms will
take advantage of the ever-increasing computing power of
the CPU and GPUs to enable more sophisticated machine
learning algorithms to be run in the cloud with higher
accuracy [207], [208]. As a consequence of this dizzying
pace of progress, we envision significant opportunities that
will eventually make HIoT an indispensable part of clinical
practice in the coming decade. However, we also expect
several barriers to entry that can slow the pace of adoption.
In this section, we first review the challenges and then
discuss opportunities.

Challenges that may prevent rapid adoption of HloT
can be broadly categorized as legal, regulatory, and ethno-
graphic [209]. From a legal point of view, we particularly
expect legal accountability to pose a challenge. Suppose
a highly-trusted machine learning-based decision support
system were to fail, causing bodily harm or fatality among
patients. Can the machine be held responsible? If so, specif-
ically, does the responsibility lie with the programmer,
adopting institution, or the business entity that sells the
program [210]? Questions of this type that were previously
irrelevant, must be addressed to eliminate uncertainties and
allow organizations adopting HIoT to better understand
their legal exposure and risks.

The second set of challenges we envision are in the
regulatory domain. HIoT devices are likely to span a wide
range of applications and sensing/actuation modalities that
vary in invasiveness. Accordingly, there are likely to be
different classes of devices with different regulatory require-
ments [211]. While a majority of the non-invasive sensors
may be made available for purchase over-the-counter (for
instance, for gathering data prior to a routine check-up
with a physician), other devices that are more invasive —
and/or have potentially adverse side effects— will likely be
available only upon prescription and will likely be subjected
to regulatory approval after clinical trials [212]. As such,
approval and adoption rates, as well as pricing of devices,
will exhibit significant heterogeneity and the synergistic
benefit from multiple HIoT sensors working in unison may
take longer than anticipated [177], [213].

Finally, ethnographic challenges involve the reluctance of
the medical community to adopt HIoT, due to its perceived
risks vs. marginal added-utility in day-to-day clinical prac-
tice [214]. We anticipate the adoption may be slow until
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some avant-garde healthcare organizations start gaining sig-
nificant advantage due to HIoT adoption and build a history
of operation without glitches. If early adopters are able to
exhibit significant operating advantages quickly, there is
also the possibility that HIoT penetration may accelerate
quickly and virtually become the norm within a short period
of time.

Despite the challenges, the HIoT also presents signifi-
cant opportunities. One of the biggest opportunities is the
potential for much higher diagnostic accuracy that can be
achieved by using statistical inference and data analyt-
ics algorithms with the increasing availability of clinical
data [215]. Currently, limited public datasets are available
for training ML algorithms and HCOs rely on their individ-
ual databases [216], [217]. Large datasets that are required to
train sophisticated algorithms (such as ones that use Deep
Learning) are not freely available. Widespread adoption of
HIoT in clinical settings and the aggregation of the resulting
data, with appropriate anonymization, can create shared
large-scale datasets from which all organizations can benefit
and improve diagnostics and health management [218]. We
envision that large-scale anonymous medical data shar-
ing networks, enabled by HIoT, will vastly improve ML
accuracy, much like data availability is currently revolu-
tionizing computer and machine vision applications. Once
established, the trend is likely to be self-reinforcing with
continued acceleration in data accumulation driving im-
proved inference and finer-grained/personalized analyses.
Such a positive feedback cycle is also likely to speed up the
mainstreaming of HIoT.

Another opportunity lies in the potential future use of
new sensing modalities and actuators. For example, while
today’s sensor technology requires a blood draw for ac-
curate measurement of blood glucose levels, future sensor
technology promises to perform the same measurements
far less invasively, without a blood draw [219]. Availability
of such conveniently-deployable technologies (e.g., non-
invasive blood pressure, blood glucose, and oxygenation
sensors) can drastically increase their use in clinical settings.
Future actuator technologies can also improve the automa-
tion of routine medical tasks, such as drug delivery. Ad-
vances in Micro-Electro-Mechanical Systems (MEMS) tech-
nologies promise to create actuators that can deliver drugs
(e.g., insulin) into the bloodstream directly, eliminating the
need for the patient to manually do so [220]. This can result
in substantial improvements in patient health, as the need
for the patient to perform routine measurements, followed
by drug intake, are eliminated and the drug dosage and ad-
ministration regimen can be customized based on both the
specific medication involved and the individual [221]. Bene-
fits of MEMS-based technologies are even more pronounced
for patients that cannot administer the drugs themselves
due to motor deficiencies.

In summary, although the HIoT roadmap into the future
is not free from bumps, we expect the pace to quicken once
the ecosystem is in place and early adopters demonstrate
the benefits it can provide.
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